

The anatomy of a centralized remedial action system: What can be done in 50 milliseconds?

Herbert Falk – Sr. Solutions Architect SISCO, INC.

A Large Western Utility:

- Service Area
 - ➢ 50,000 Square Miles
 - ➤ 5.3 Million Electric Meters
- Assets
 - 4,990 transmission and distribution circuits
 - 12,000 circuit miles of transmission lines
 - 111,500 circuit miles of distribution lines
 - 5,000 MW of generating capacity in nuclear, hydroelectric, and fossil-fuel power plants
 - 80 Transmission Substations
 - 850 Distribution Substations

Key Transmission Planning/Operational Issues

- Congested transmission corridors/ network
 - Ever increasing customer load growth
- Long lead time to build transmission
 - Transmission lagging generation and customer load growth
- Integration of new generators including renewables into the transmission network
 - Uncertainty on new generation siting/locations
 - Legislative/regulatory renewable targets mandate

- Increasing transmission voltage support requirements
- Extensive use of "Remedial Action Schemes (RAS)"

Why RAS is Needed?

- Long lines separating load and generation need protection to prevent damage from generation tripping
- Increasing reserve margins to protect lines reduces available energy
- Maintaining system stability during anomalous conditions challenges operators to respond quickly to prevent cascade failure
- More transmission capacity in the same corridor is subject to the same contingencies and results in increasing reserve margins

C-RAS Architecture

C-RAS Architecture

Modern Technology Allows

A and B Control Centers

System Sized/Tested

- 120 Substations
- 932 IEDs (466 on A and B each)
- 2 GOOSE Control Blocks per IED(high/low priority)
- 1864 GOOSE DataSets processed per UAP
- 43 different items/IED sent (80,152 per UAP)
- Each UAP processes both A and B system GOOSE messages
- Each UAP produces approximately 150K

GOOSE Processing Requirements

EMS/61850 Harmonized Model

Used to Configure EMS and UAP(s)

- IEC 61970-452 profile used for power system modeling
- Extensions for modeling of:
 - Contingencies
 - Mitigations
 - RAS Analytics
 - IEDs

CIM and 61850 Harmonization

General Information Flow

EMS Processing

- 150K-200K per UAP pair (6 pairs)
- Not quite Big Data, but large volume of data
- Presents visualization challenges for operators
- Too much data to manually configure/layout displays (configuration and displays are automatic based upon harmonized CIM instance file)

Thank You

Contact Information:

Herbert Falk SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314 USA

www.sisconet.com

